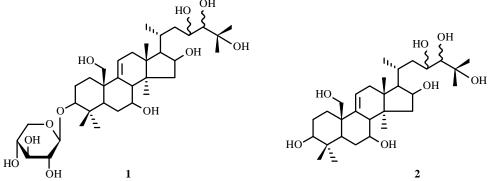
TRITERPENE GLYCOSIDES OF Astragalus AND THEIR GENINS. LXX. ORBICOSIDE, THE FIRST LANOSTANE GLYCOSIDE FROM Astragalus PLANTS

R. P. Mamedova, M. A. Agzamova, and M. I. Isaev


UDC 547.918:547.926

Orbicoside, a new lanostane glycoside and the first from plants of the Astragalus genus, was isolated from the aerial organs of Astragalus orbiculatus Ledeb. (Leguminosae). It has the structure 23ξ , 24ξ -lanost-9(11)-en- 3β , 7β , 16β , 19, 23, 24, 25-heptaol 3-O- β -D-xylopyranoside. The structure of orbicoside was established using PMR and ${}^{13}C$ NMR, which were interpreted using DEPT and 2D NMR spectroscopies ${}^{1}H_{-}{}^{1}H$ COSY, HSQC, and HMBC.

Key words: lanostanoids, triterpenoids, orbicoside, *Astragalus*, Leguminosae, PMR and ¹³C NMR spectra, DEPT, 2D NMR: ¹H–¹H COSY, HSQC, HMBC.

In continuation of research on isoprenoids of plants from the *Astragalus* genus [1], we isolated from the aerial part of *Astragalus orbiculatus* Ledeb. (Leguminosae) a new glycoside and called it orbicoside (1) [2]. The structure determination is presented in this communication.

The PMR and ¹³C NMR of **1** (Table 1) were interpreted using DEPT and 2D NMR spectroscopy methods ($^{1}H^{-1}H$ COSY, HSQC, HMBC), which clearly indicated signals of seven methyls and one hydroxymethyl belonging to the genin. Considering that the lanostane triterpenoid orbigenin (**2**) was isolated from this plant [1, 2], we assigned orbicoside to lanostane tetracyclic triterpenoids.

In fact, a comparison of the PMR and 13 C NMR spectra of 1 and 2 shows that the genin part of orbicoside and orbigenin are completely similar with the exception of C-3, which is glycosylated. Therefore, orbigenin is the aglycon of 1.

The chemical shifts of the C and H atoms of the carbohydrate part and the spin—spin coupling constants (SSCC) indicate that **1** is a monoside that contains β -D-xylopyranose [3-10]. These parameters are consistent with the ⁴C₁-conformation of the pentose in orbicoside.

S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 120 64 75, e-mail: m_isaev@rambler.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 482-483, November-December, 2003. Original article submitted October 13, 2003.

C atom	1				2
	δ_{C}	DEPT	$\delta_{H}\left(J\right)$	HMBC (C atom)	δ_{C}
1	30.87	CH ₂	α 1.35		30.99
			β 2.62 dt (13.6; 3.4)		
2	27.22	CH ₂	2.13; 2.40		28.66
3	88.87	CH	3.50 dd (11.8; 4)	4, 29, 30, X1	78.20
4	39.84	С	-		39.71
5	50.44	CH	1.36		50.34
6	31.85	CH_2	1.98; 2.25		32.22
7	71.79	CH	4.09 td (10; 4)		71.84
8	50.87	CH	2.87 dm	7, 9, 11, 13	50.87
9	141.86	С	-		142.01
10	44.93	С	-		45.30
11	121.58	СН	5.62 dt (6.2; 2)	8, 10, 12, 13	121.57
12	37.54	CH_2	2.16; 2.26	9, 11, 13, 14, 18	37.54
13	45.37	C	_		45.37
14	45.37	С	-		45.38
15	49.52	CH_2	2.48 dd (14; 5)	8, 13, 14, 16, 28	49.56
		2	3.00 dd (14; 8)	13, 14, 17, 28	
16	72.63	СН	4.83 td (8; 5)	13, 14	72.63
17	55.50	СН	1.93 dd (11.3; 7.3)	,	55.50
18	15.69	CH ₃	1.43 s		15.72
19	60.54	CH ₂	4.09; 4.22 d (10)		60.54
20	27.42	CH	2.62		27.42
21	20.47	CH ₃	1.23 d (6.4)		20.47
22	43.03	CH ₂	2.20; 2; 20		43.03
23	73.20	CH	4.32 td (8.4; 3)		73.21
24	79.14	СН	3.78 d (8.4)		79.13
25	74.25	C	-		74.24
26	24.70	CH ₃	1.73 s		24.69
27	28.89	CH ₃	1.69 s		28.90
28	19.28	CH ₃	1.15 s		19.28
29	28.57	CH ₃	1.37 s		29.18
30	18.10	CH ₃	1.10 s		17.70
50	10.10	Chi			11110
			β -D-Xyl $p(X)$		
1	107.73	CH	4.88 d (7.6)	3, X4	
2	75.48	CH	4.02 dd (8.6; 7.8)	X3	
3	78.60	СН	4.18 t (8.6)	X2, X4	
4	71.23	CH	4.23 m		
5	67.14	CH ₂	4.41 dd (11.3; 5)	X1, X3, X4	
		-	3.81 dd (11.3; 9.9)	X1, X3, X4	

TABLE 1. Chemical Shifts of C and H in Orbicoside (1), Data from DEPT and 2D NMR Spectra: ${}^{1}H-{}^{1}H$ COSY, HSQC, and HMBC and Chemical Shifts of C Atoms in Orbigenin (2) (δ , ppm, J/Hz, C₅D₅N, 0 = TMS)

Chemical shifts of protons without multiplicities and SSCC were found using 2D spectra.

The signal for C-3 in the ¹³C NMR spectrum of **1** undergoes a low-field shift by $\Delta\delta$ +10.67 ppm compared with that in **2** and is observed at δ 88.87. This unambiguously determines the bonding site of the carbohydrate as C-3 of the genin. In agreement with this, correlation peaks occurred between the anomeric proton, observed at δ 4.88 as a doublet with SSCC ${}^{3}J$ = 7.6 Hz, and C-3 of the genin and between H-3, found at δ 3.50 as a doublet of doublets with SSCC ${}^{3}J_{1}$ = 11.8 Hz and ${}^{3}J_{2}$ = 4 Hz, and the anomeric C atom observed at δ 107.73.

Thus, the spectral data lead to the conclusion that the new lanostane glycoside orbicoside has the structure 23ξ , 24ξ -lanost-9(11)-en- 3β , 7β , 16β , 19, 23, 24, 25-heptaol 3-O- β -D-xylopyranoside. Orbicoside is the first lanostane glycoside isolated from plants of the *Astragalus* genus [2, 11].

EXPERIMENTAL

General comments have been published [12]. The following solvent systems were used: $CHCl_3:CH_3OH:H_2O$ (70:23:4, 1).

PMR and ¹³C NMR spectra were recorded on a UNITY 400plus spectrometer in C_5D_5N (δ , ppm, 0 = TMS); ¹³C NMR spectra, with full C—H decoupling and also under DEPT conditions. 2D NMR spectra were recorded using standard Varian programs.

Isolation and Separation of *Astragalus orbiculatus* **Ledeb. Triterpenoids.** Fractions with compound $\underline{8}$ that accumulated after elution of cycloorbicoside G [13] were rechromatographed over a column with elution by system 1 to isolate $\underline{8}$ (98 mg), called by us orbicoside (1).

Orbicoside (1), $C_{35}H_{60}O_{11}$, mp 281-283°C (CH₃OH). For PMR and ¹³C NMR spectra, see Table 1.

REFERENCES

- 1. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 388 (2003).
- 2. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 296 (2002).
- 3. M. I. Isaev, B. A. Imomnazarov, Yu. M. Fadeev, and P. K. Kintya, *Khim. Prir. Soedin.*, 360 (1992).
- 4. M. A. Agzamova and M. I. Isaev, Khim. Prir. Soedin., 379 (1994).
- 5. M. A. Agzamova and M. I. Isaev, Khim. Prir. Soedin., 515 (1994).
- 6. M. A. Agzamova and M. I. Isaev, *Khim. Prir. Soedin.*, 88 (1995).
- 7. M. A. Agzamova and M. I. Isaev, Khim. Prir. Soedin., 700 (1995).
- 8. M. A. Agzamova and M. I. Isaev, Khim. Prir. Soedin., 348 (1999).
- 9. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 453 (2002).
- 10. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 460 (2002).
- M. I. Isaev, in: Proceedings of the 5th International Symposium on the Chemistry of Natural Compounds, May 20-23, 2003, Tashkent, p. 27.
- 12. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 453 (2001).
- 13. M. A. Agzamova, M. I. Isaev, M. B. Gorovits, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 837 (1987).